# Proprieta' dei neutrini

- Proprieta' dei neutrini
- Sorgenti di neutrini, naturali ed artificiali
- Interazioni dei neutrini
- Metodi di rivelazione di neutrini e antineutrini di interesse astrofisico
- Gli esperimenti in laboratori sotterranei

## Perche' i neutrini in questo corso?

- In diverse reazioni nucleari vengono prodotti neutrini: ad. esempio  $p+p\rightarrow d+e^-+v_e$ , reazione alla base della catena pp per la fusione di 4 protoni in un nucleo di elio nell'interno delle stelle.
- I neutrini sono quindi gli indicatori, spie degli avvenuti processi nucleari nell'interno stellare e non solo, sono anche spie di alcuni processi avvenuti nei primi istanti di vita dell'universo, nell'esplosione di supernovae, dei decadimenti radioattivi all'interno della terra
- Caratteristica principale dei neutrini e' la loro debole interazione con la materia: riescono quindi a "sfuggire" degli interni delle stelle (sole, supernovae) e della materia nell'universo primordiale mantenendosi praticamente inalterati, e fornendoci cosi' informazioni "di prima mano" (non adulterate dall'interazione con altri oggetti) sulle condizioni della materia e dell'universo al momento della loro produzione.
- Solo se si conoscono le proprieta dei neutrini si possono utilizzare come sonde
- Nell'ultimo decennio ci sono stati enormi avanzamenti nella comprensione dei neutrini, in particolare riguardo al fenomeno delle oscillazioni (cambiamenti di flavour), con implicazioni sulle masse.
- Adesso che i neutrini sono "calibrati" possiamo utilizzarli come sonde astrofisiche.

#### A short history of neutrinos

- 1898 Discovery of the radioactivity
- 1926 Problem with beta radioactivity
- 1930 Pauli invents the neutrino particle
- 1932 Fermi baptizes the neutrino and builds the theory of weak interaction
- 1946 Pontecorvo program of neutrino detection
- 1956 First observation of the neutrino by an experiment
- **1957** Pontecorvo: Hypothesis of neutrino oscillation **1962** Discovery of an other type of neutrino:  $v_{\mu}$
- **1970** Davis experiment opens the solar neutrino puzzle
- 1974 Discovery of neutral currents thanks to the neutrinos
- 1987 Neutrinos from SN 1987A
- **1991** LEP experiments show that there are only three light neutrinos **1992** Missing solar neutrinos confirmed by GALLEX
- $\textbf{2000} \ \nu_{\tau} \ observed$
- **2001** SNO closes the solar neutrino puzzles, by directly proving the transmutation of solar neutrinos
- 2002 Kamland observes transmutation of man made (reactor) neutrinos
- 2005 Kamland observes antineutrinos from the Earth
- **2007** Borexino at LNGS detects Solar Be neutrinos



## Proprieta' dei neutrini

- I neutrini sono particelle che hanno solo interazioni elettrodeboli e gravitazionali, dunque leptoni, con carica elettrica nulla e spin <sup>1</sup>/<sub>2</sub>
- Conosciamo tre tipi (flavour) di neutrini, associati ciascuno a un leptone carico.
- Chiamiamo neutrino con flavour elettronico quello che e' prodotto assieme ai positroni nei decadimenti β+, e cosi' per gli altri
- Per ogni neutrino, esiste il corrispondente antineutrino, con numero leptonico di famiglia e numero leptonico globale opposto.
- I tre neutrini completano dunque in doppietti le tre famiglie (o generazioni) di leptoni, analoghe ai doppietti che costituiscono le tre famiglie di quarks

| Part.          | m [eV] | $\tau/m \ [s/eV]$ | M [ $\mu_B$ ] |
|----------------|--------|-------------------|---------------|
| v <sub>e</sub> | <2     | >300 (R)          | <10-10        |
|                |        | $>710^{9}$ (S)    |               |
| $\nu_{\mu}$    | <2105  | >15.4 (A)         | <10-9         |
| $v_{\tau}$     | < 2107 | ?                 | <10-7         |



#### Masse dei neutrini

- La tabella mostra i risultati di esperimenti svolti con nuclei ed acceleratori che essenzialmente studiano la cinematica dei processi in cui i neutrini vengono prodotti.
- Tutti gli esperimenti danno solo dei limiti superiori, cioe' i risultati sono consistenti col fatto che le masse dei neutrini siano nulle.

| Part.          | <b>m</b> [eV]               | $\tau/m [s/eV]$ | μ [μ <sub>B</sub> ] |
|----------------|-----------------------------|-----------------|---------------------|
| v <sub>e</sub> | <2                          | >300 (R)        | <10-10              |
|                |                             | $>710^9$ (S)    |                     |
| $\nu_{\mu}$    | <b>&lt;210</b> <sup>5</sup> | >15.4 (A)       | <10-9               |
| ν <sub>τ</sub> | < 2107                      | ?               | <10-7               |
|                |                             |                 |                     |

- Per il teorema CPT particelle e antiparticelle hanno la stessa massa, dunque i limiti valgono sia per neutrini che per antienutrini, e si possono dedurre gli uni dagli altri
- Il limite sulla massa dell'antineutrino elettronico viene dallo spettro del decadimento del Tritio (in cui sono prodotti anti-v<sub>e</sub>), quello sui neutrini muonici dal decadimento di pioni carichi a riposo.
- Notare che sui neutrini prodotti con processi piu' energetici le informazioni sono meno accurate.
- Gli esperimenti sulle oscillazione di neutrini compiuti nell'ultimo decennio hanno mostrato che\* :
- -almeno due delle masse devono essere non nulle
- -le differenze fra le tre masse sono al piu' di 0.1 eV
- L'informazione sulle masse puo' dunque esser riassunta come:

 $m_i < 2 \text{ eV}, \delta m_{ii} < 0.1 \text{ eV}$ 

\*questo argomento verra' approfondito nel capitolo sulle oscillazioni dei neutrini

### Stabilita' del neutrino

- Per quel che sappiamo, i neutrini sono stabili
- Le osservazioni per rivelare un eventuale decadimento del neutrino danno solo limiti inferiori sulla vita media.

| Part.          | m [eV]            | $\tau/(mc^2)$ [s/eV]  | μ [μ <sub>B</sub> ] |
|----------------|-------------------|-----------------------|---------------------|
| ν <sub>e</sub> | <2                | >300 (R)              | <10-10              |
|                |                   | >710 <sup>9</sup> (S) |                     |
| $\nu_{\mu}$    | <210 <sup>5</sup> | >15.4 (A)             | <10-9               |
| ν <sub>τ</sub> | < 2107            | ?                     | <10-7               |
| <b>.</b>       |                   | •11                   | •                   |

- Supponiamo che i neutrini abbiano vita media $\tau$ . Nel laboratorio, il loro tempo di decadimento sarebbe t=  $\gamma \tau = (E/mc^2) \tau$ , dove E e' l'energia nel laboratorio.
- La lunghezza di decadimento sarebbe  $l_{dec} = vt \approx c (E/mc^2) \tau$ . Se osservo che in neutrini percorrono una distanza L senza che il loro numero sia cambiato apprezzabilmente, cio' vuol dire  $L < l_{dec}$  ossia  $\tau/(mc^2) > L/(cE)$
- Nei reattori sono prodotti antineutrini elettronici con energie E  $\approx$  3 MeV, il cui numero non decade su tratti L  $\approx$  1km, da cui si ricaverebbe  $\tau/(mc^2) > 3 \ 10^{-12}$  s/eV, un limite molto meno restrittivo di quello quotato in tabella
- Se si suppone che nel decadimento del neutrino siano prodotti fotoni, allora dovrei aspettarmi dopo un tratto L un flusso di g  $\Phi(\gamma) = \Phi(\nu) L/l_{dec}$ . In questo modo, attribuendo i gamma osservati (fondo) al piu' al decadimento del neutrino si ottengono i limiti mostrati in tabella, usando Reattori, Sole, Acceleratori.
- Analogamente che per le masse, il fenomeno delle oscillazioni dice che se i neutrini decadessero, le loro velocita' di decadimento sarebbero confrontabili, per cui il risultato ricavato per i neutrini elettronici solari puo' essere utlizzati per tutti i neutrini:

 $\tau/(mc^2) > 710^9 \text{ s/eV}$ 

\* non ci sono esperimenti dedicati al riguardo, ma i risultati sono sotto prodotti di misure destinate ad altre finalita'

## Momento magnetico dei neutrini

• I neutrini hanno interazioni elettro-deboli, dunque fa senso studiare le loro proprieta' e. m.

| Part.          | m [eV]            | $\tau/(mc^2)$ [s/eV] | μ [μ <sub>B</sub> ] |
|----------------|-------------------|----------------------|---------------------|
| ν <sub>e</sub> | <2                | >300 (R)             | <10-10              |
|                |                   | $>710^{9}$ (S)       |                     |
| $\nu_{\mu}$    | <210 <sup>5</sup> | >15.4 (A)            | <10-9               |
| ντ             | < 2107            | ?                    | <10-7               |
|                |                   |                      |                     |

- La carica dei neutrini e' nulla, per quel che sappiamo: dal comportamento dei neutrini nei reattori si ricava per una eventuale carica elettrica, q/e< 410<sup>-12</sup>, mentre dall'osservazione dei neutrini da SN198 si ricava un limite ben piu' stringente q/e< 210<sup>-15</sup>
- Perche' una particella abbia un momento di dipolo magnetico, deve avere massa non nulla e spin diverso da zero, in quanto :
  - un oggetto dotato di momento magnetico genera un campo magnetico e dunque porta con se' l'energia associata a tale campo, che e' non nulla.
  - Nel suo riferimento di quiete deve esistere una direzione privilegiata, in cui punti il dipolo magnetico. Questa puo' solo essere data dallo spin,  $\mu = \kappa \sigma$ ,
- Il modello standard delle interazioni elettrodeboli predice :  $\mu / \mu_B \approx 10^{-19} \text{ m} / [1 \text{ eV}]$
- Teorie alternative prevedono dei valori piu' grandi; l'osservazione delle loro predizioni sarebbe un segnale di fisica oltre il modello standard
- Ad oggi, i limiti piu' stringenti in esperimenti di laboratorio provengono dai reattori  $(\mu / \mu_B < 10^{-10})$ , mentre argomenti astrofisci ( tempi di raffreddamento di nane bianche, luminosita' delle giganti rosse) possono dare limiti piu' stringenti di 1-2 ordini di 7 grandezza

# La larghezza della $Z_0$ e il numero delle famiglie: 3 e non piu' di tre

- Si osservano i decadimenti della Z<sub>0</sub> in l<sup>+</sup>l<sup>-</sup>, e q anti-q, in quanto vengono prodotte particelle che lasciano tracce nel rivelatore.
- Esistono, ma non si rivelano direttamente, i decadimenti Z<sub>0</sub> → v +anti-v.
- La loro presenza si può dedurre dal contributo alla larghezza totale, che determina quindi il numero dei tipi di neutrini, e dunque il numero delle famiglie.
- I risultati di LEP sono consistenti con tre tipi di neutrini, ed escludono ulteriori famiglie\*
- \*A meno che la massa dei nuovi neutrini sia m<sub>v</sub>>M<sub>z</sub>/2=45 GeV



## Sorgenti naturali di neutrini



У

## Sorgenti artificiali di neutrini: reattori nucleari

- I tipici reattori commerciali hanno potenze termiche di 3GW e utilizzano Uranio arricchito <sup>235</sup>U al 3%
- In media, ciascuna fissione nucleare produce
   Δ=200MeV quindi un tipico reattore produce 10<sup>20</sup> fus/s
- E' facile comprendere che il numero medio di (anti) neutrini e' 6 per fissione. Nella fissione indotta da neutroni si ha

 $_{92}U^{235} + n \rightarrow X1 + X2 + 2n$ 

- La distribuzione dei prodotti di fissione e' piccata intorno a A= 94 e A =140; per questi numeri di massa i nuclei stabili sono  $_{40}$ Zr<sup>94</sup> e  $_{58}$ Ce<sup>140</sup>. Per raggiungere questi nuclei, in cui la carica torale e' 98, partendo da 92 protoni, e' necessario che 6 protoni si trasformino in neutroni, e dunque si hanno 6 decadimenti beta, ossia sei antineutrini.
- Dunque un reattore con potenza termica di 3GW produce L<sub>v</sub>≈6 x10<sup>20</sup> neutrini/s, in maniera isotropa.
- A una distanza di 10 m il flusso e'

 $\Phi = 5 \ 10^{13} \text{ anti } v /.cm^2/s$ 





#### **Commercial reactors in Japan**

During the measurement period of KamLAND in Ref. [3] (from 9 March 2002 to 11 January 2004), 52 commercial reactors in 16 electric power stations and a prototype reactor operated in Japan. All Japanese commercial reactors are light water reactors (LWRs), 29 are boiling water reactors (BWRs) and 23 are pressurized water reactors (PWRs). Both types of LWRs use 3–5% enriched uranium fuel. Generally, reactor operation stops once a year for refueling and regular maintenance. During the refueling, one-fourth of the total nuclear fuel is exchanged in BWRs and one-third in PWRs.

"As of 2005, Japan was the third largest nuclear power user in the world with 55 <u>nuclear reactors</u> accounting for 30% of its electricity generated. There are plans to increase this to 37% in 2009 and 41% in 2014 as part of Japan's overall economic plan for constant GDP in the face of decreasing population. Ultimately, nuclear's share is planned to rise to around 60% of power production in 2050 with 20 thermal GW more working towards hydrogen production".



# Thermal power flux at KamLAND

Thermal power flux at KamLAND site × constant : ~ expected neutrino flux



## Korea reactors



3~5% contribution to KamLAND observation

## **Other reactors**



## Kamioka v.s. Japanese Reactors



## Energy spectrum for anti-electron-neutrinos



16

### Lo spettro degli anti neutrini da reattore

- I neutrini della fissione portano via mediamente 1.6 MeV, il che vuol dire che dei 200 MeV di ciasucna fissione il 6% non va in calore, ma in neutrini
- I neutrini piu' abbondanti sono quelli provenienti dalla fissione con neutroni termici dell'235U, ma sono importanti anche quelli provenienti da <sup>238</sup>U, nonche' da due isotopi del Plutonio, <sup>239</sup> Pu e <sup>241</sup>Pu, prodotti attraverso lo schema





•La figura mostra lo spettro delle varie componenti, con le relative incertezze, e il prodotto di questo con la sezione d'urto per la reazione tipica usata per la rivelazione (con soglia a 1.8 MeV

 $\bar{v}_e + p \rightarrow e^+ + n$ .

•Da notare il picco intorno a 4 MeV, cioe' l'energia alla quale si trovano il maggior numero dei neutrini rivelati

17

## Neutrino energy spectra



<sup>235</sup>U :

K. Schreckenbach et al. Phys. Lett. B 160 325 (1985) <sup>239</sup>Pu, <sup>24</sup>1Pu :

A. A. Hahn et al.

Phys. Lett. B 218 365 (1989) <sup>238</sup>U :

P. Vogel et al.

Phys. Rev. C 24 1543 (1981)

Observed by Bugey experiment

# Fasci di neutrini da acceleratori di particelle

- Target Horns Decay Pipe
- Dagli acceleratori di particelle, sin dagli anni 60-70, si possono estrarre fasci di neutrini, principalmente di tipo muonico.
- Un fascio di protoni che sbatte su un bersaglio (Target),, produce in abbondanza pioni
- Questi vengono focalizzati attraverso un corno magnetico (horn) e quindi attraversano una regione (decay pipe) dove possono decadere.
- Il decadimento principale e'

 $\pi^{\scriptscriptstyle +}\! \rightarrow \mu^{\scriptscriptstyle +}\! + \nu_{\mu}$ 

e analogamente per  $\pi^-$ 

- A valle della decay pipe, fermati gli eventuali muoni in blocchi di cemento, restano solo i neutrini.
- Per la realizzazione del fascio di neutrini sondo dunque necessari tre elementi (Target, horn, Decay pipe)



- In tutti I fasci neutrini il primo step e' costituito dalla produzione di secondari ( $\pi^{\pm}$ ,  $\kappa^{\pm}$ ) mediante interazione del fascio primario di protoni su un bersaglio
- Il bersaglio e' costituito da un insieme di barre cilindriche di qualche centimetro (fino a 10cm) di spessore separate da strati di aria in modo da minimizzare il riassorbimento dei secondari da parte del bersaglio stesso. La geometria e' ottimizzata per ridurre quanto possibile gli stress meccanici e termici dovuti all'intensita' del fascio primario
- Il materiale classicamente utilizzato e' il berillio (wanf al cern, miniboone al fermilab). I fasci neutrini piu' recenti utilizzano l'alluminio (K2K) o il Carbonio (CNGS)
- Dimensioni tipiche (Wanf 110cm, Miniboone 65 cm, k2k 60cm)



### **HORNs: Focalizzazione delle particelle secondarie**



- L'horn non e' nient'altro che una lente magnetica
- Nell'horn le particelle sono deflesse da un campo magnetico radiale realizzato da 2 conduttori coassiali lungo i quali fluiscono correnti di uguale intensita' ma di direzioni opposte
- Il profilo interno dell'horn puo' essere dedotto imponendo la condizione di emissione parallela

## Un esempio: il fascio di KEK per K2K





The K2K, KEK-to-Kamioka, experiment is the first accelerator-based long-baseline experiment [2]. Its primary goal is to give a definite answer concerning the existence of neutrino oscillation found in atmospheric neutrino observations. A conventional beam is produced at KEK, and the far detector is Super-Kamiokande (SK) located 250 km away from KEK. The experiment started in 1999 and is on going.

The proton beam is extracted from the 12-GeV proton synchrotron (PS) in a single turn with a  $1.1 \,\mu s$  width every 2.2s. The design intensity is  $6 \times 10^{12}$  protons on target/pulse. Every beam spill

is stamped with time measured by the global positioning system (GPS) with an accuracy of <200 ns [3]. The production target is a 66 cm long Al rod. Its diameter is 2 cm for runs in June 1999, and 3 cm since November 1999. Positive pions are focused by two electromagnetic horns [4]. Both homs are operated by a pulsed current of  $\sim 1 \text{ ms}$  width and 200 kA peak for the June 1999 run and 250 kA peak for runs since November 1999. The length of the decay pipe is 200 m. A beam dump at the end of the decay pipe is 3-m thick from the target, there is a hole in which front neutrino



#### Le interazioni dei neutrini

- La rivelazione dei neutrini si basa sulle interazioni che questi possono avere con cio' che si trova nel bersaglio, dunque con elettroni, nucleoni o nuclei.
- Ricordiamo che esistono due tipi di interazioni debole, quella di corrente carica e quella di corrente neutra, mediate rispettivamente dai Bosoni W e Z, le cui proprietà richiameremo nelle trasparenze successive
- Quindi stimeremo il comportamento delle sezioni d'urto dei neutrini sui vari costituenti del bersaglio.
- Un punto importante da ricordare e' che le energie dei neutrini di interesse astrofisico sono dell'ordine del MeV, e dunque siamo sempre in condizioni di bassa energia, rispetto alla scala naturale delle interazioni deboli, data dalle masse dei W e Z, ordine 100 GeV. In prima approssimazione, tutte le ampiezze dei diffusione A sono dell'ordine di

 $A \approx G_F \text{ dove } G_F = 10^{-5} \text{ m}_p^{-2}$  e' la costante che caratterizza i processi deboli a bassa energia.\*

- Un altro punto importante e' che la lunghezza d'onda di questi neutrini, λ=h/p, e' dell'ordine di 200 Fermi, dunque e' piccola rispetto alle dimensioni dell'atomo, ma grande rispetto a quelle del nucleo. Per questo, i neutrini:
- a) distinguono gli elettroni dai nuclei atomici
- b) non distinguono i nucleoni all'interno del nucleo

\* Sto usando  $h/2\pi = c = 1$ , per cui le ampiezze di scattering hanno dimensioni  $E^{-2}$ 

#### Il quadro generale dei processi deboli di corrente carica

- Si chiamano processi deboli di corrente carica tutti quei processi (=collisioni o decadimenti) in cui avviene emissione o assorbimento di W, reali e virtuali
- Sono tutti descrivibili in termini di combinazioni di vertici fondamentali del tipo

#### (Wqq'), (Wll')

in cui a ciascun vertice:

- i)si conserva la carica elettrica
- ii)si conserva il numero barionico
- iii)si conserva il numero leptonico
- Le interazioni deboli di corrente carica hanno la stessa intensità per ciascuna famiglia di leptoni
- I bosoni  $W^{\pm}$  (spin 1,  $M_W = 80.4 \text{ GeV}$ ) sono dunque i "mediatori" delle interazioni deboli di corrente carica, così come i fotoni sono i mediatori delle interazioni elettromagnetiche.



I vertici fondamentali di CC. Indichiamo, come comune nella letteratura, con linee continue i quarks e leptoni e con linee ondulate i mediatori delle interazioni

- L'unificazione delle interazioni deboli ed e.m. significa che ad energie dell' ordine di M<sub>w</sub> la probabilità di emettere o assorbire W è comparabile con quella di emettere o assorbire fotoni.
- A basse energie le interazioni deboli appaiono "più deboli " di quelle elettromagnetiche poiché l'emissione/assorbimento di W virtuali può avvenire su tempi (molto) più brevi, dati dalla relazione di indeterminazione energia-tempo.

#### Processi che coinvolgono leptoni e adroni

• Come per i leptoni, si possono usare gli stessi concetti per gli adroni, e introdurre possibili processi virtuali in cui sono coinvolti i W:

 $q(-1/3) \rightarrow W^{-} + q(2/3)$  $q(2/3) \rightarrow W^{+} + q(1/3)$ 

- Si possono reinterpretare facilmente tutti i processi delle interazioni deboli studiati all'inizio in termini di emissione e assorbimento di W virtuali fra leptoni e quarks. Ad esempio:
- 1)Il decadimento del pione  $\pi^+=(u, antid)$ ,

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$ 

può essere visto come l'annichilazione della coppia u, anti-d in W<sup>+</sup> (virtuale) che decade in muone e neutrino:

$$\pi^+ = u + anti-d \to W^+ \to \mu^+ + \nu_{\mu}$$

• 2)nel decadimento  $\beta^-$ ,

 $n \rightarrow p + e + anti-v_e$ 

all'interno di un neutrone n = (u, d, d) un quark d ->u+W<sup>-</sup> e quindi W<sup>-</sup> -> e + anti-v<sub>e</sub>. Il risultato è dunque:

$$n=(u,d,d) \rightarrow (u,u,d) + e + anti-v_e$$
. =p+ e + anti-v<sub>e</sub>





#### La Z<sup>0</sup> e le interazioni deboli di corrente neutra

- Il bosone Z<sup>0</sup> (m=91.2GeV S=1, neutro) decade in coppie di leptoni e in coppie quark antiquark, con larghezze comparabili.
- La larghezza di decadimento è la stessa per ciascuna famiglia di leptoni e di quark
- I vertici fondamentali che riguardano la Z<sup>0</sup> hanno proprietà simili a quelli delle W:conservano la carica elettrica, il numero barionico e il numero leptonico.
- Come le W, così anche le Z<sup>0</sup> possono essere emesse o assorbite in processi reali e virtuali, detti processi deboli di corrente neutra.
- Questa è una ulteriore classe di interazioni, il cui mediatore è la Z<sup>0</sup>, che da origine a nuovi processi non possibili mediante le interazioni di CC.
- Ad esempio, induce produce le collisioni elastiche  $v_{\mu} + e \rightarrow v_{\mu} + e$ , dove che non sono mediate da processi di corrente carica

```
\begin{split} J &= 1 \\ \text{Charge} &= 0 \\ \text{Mass } m &= 91.1876 \pm 0.0021 \text{ GeV} \ ^{[d]} \\ \text{Full width } \Gamma &= 2.4952 \pm 0.0023 \text{ GeV} \\ \Gamma(\ell^+ \ell^-) &= 83.984 \pm 0.086 \text{ MeV} \ ^{[b]} \\ \Gamma(\text{invisible}) &= 499.0 \pm 1.5 \text{ MeV} \ ^{[e]} \\ \Gamma(\text{hadrons}) &= 1744.4 \pm 2.0 \text{ MeV} \\ \Gamma(\mu^+ \mu^-) / \Gamma(e^+ e^-) &= 1.0009 \pm 0.0028 \\ \Gamma(\tau^+ \tau^-) / \Gamma(e^+ e^-) &= 1.0019 \pm 0.0032 \ ^{[f]} \end{split}
```

#### Average charged multiplicity

Ζ

 $\langle N_{charged} \rangle = 21.07 \pm 0.11$ 

| Z DECAY MODES    | Fraction ( $\Gamma_i/\Gamma$ ) Confidence level |
|------------------|-------------------------------------------------|
| $e^+e^-$         | ( 3.363 ±0.004 ) %                              |
| $\mu^{+}\mu^{-}$ | ( $3.366 \pm 0.007$ ) %                         |
| $\tau^+\tau^-$   | ( 3.370 $\pm 0.008$ ) %                         |
| $\ell^+ \ell^-$  | [b] ( 3.3658±0.0023) %                          |
| invisible        | (20.00 ±0.06 ) %                                |
| hadrons          | (69.91 ±0.06 )%                                 |
|                  |                                                 |



#### Ampiezze di diffusione e sezioni d'urto di processi a due corpi

• Ci interessano processi a due corpi

 $A+B \rightarrow C+D$ ,

dove A...D, sono leptoni o quarks (questi ultimi confinati all'interno di nucleoni o nuclei)

• La sezione d'urto differenziale rispetto al momento trasferito,  $d\sigma/dt$  e' data da  $d\sigma/dt = I \mathcal{F} I^2$ ,

dove  $\mathcal{A}$  e' l'ampiezza di diffusione e la variabile di Mandelstam t e' definita da

 $t = (\mathbf{P}_{A} - \mathbf{P}_{C})^{2} - (E_{A} - E_{C})^{2}$ 

- Osservare che t e' un invariante relativstico.
- Per la conservazione del quadrimpulso, posso anche scrivere:

t= ( $\mathbf{P}_{\mathrm{B}}$  -  $\mathbf{P}_{\mathrm{D}}$ )<sup>2</sup> -(E<sub>B</sub> - E<sub>D</sub>)<sup>2</sup>

- Da notare che  $d\sigma/dt$  e' un invariante relativitico, in quanto " $\sigma$ " descrive una dimensione trasversa, invariante per Lorentz, e t e' costruito in modo da essere un invariante relativistico.
- In unita' naturali (ħ =c=1) tutto si puo' misurare in termini di potenze dell'energia, dunque [l]= [E]<sup>-1</sup>, [p]=[E] e quindi
   [dσ/dt] = [E]<sup>-4</sup>
   [A] = [E]<sup>-2</sup>
- Se in unita' naturali una sezione d'urto  $\sigma$  vale 1GeV<sup>-2</sup>, in unita tradizionali <sub>27</sub> il suo valore sara' ( $\hbar$  c) <sup>2</sup> 1GeV<sup>-2</sup>=1/25 fm<sup>2</sup>= 4 10<sup>-28</sup> cm<sup>2</sup>



#### Ampiezze di diffusione e sezioni d'urto di processi deboli a bassa energia

- Ci interessano processi a due corpi  $A+B \rightarrow C+D$ , dove A...D, sono leptoni o quarks (questi ultimi contenuti in nucleoni o nuclei).
- L'ampiezza di diffusione  $\mathcal{A}$  si ottiene combinando (=cucendo) tutti i vertici permessi dalla teoria (dunque per CC e CN) che abbiano come gambe esterne quelle corrispondenti alle particelle A,B, C e D.
- A ciascuno dei grafici risultanti e' associato un valore  $\mathcal{A}_i$  e l'ampiezza di diffusione e' la <u>somma lineare</u> di questi valori:  $\mathcal{A} = \mathcal{A}_i + \mathcal{A}_i + \dots$
- La sezione d'urto differenziale  $d\sigma/dt = |\mathcal{A}|^2 = |\mathcal{A}_1 + \mathcal{A}_1 + \dots |^2$ , contiene dunque dei <u>termini di interferenza</u>, quando piu' di un grafico contribuisce.
- Le ampiezze di diffusione sono in genere funzioni di s e t. Nel limite di bassa energia, le ampiezze dei processi deboli tendono a un limite
- $\circ \quad \mathcal{A} = \zeta(A, B, C, D) \ G_F$
- Dove  $\zeta$  e' un fattore numerico di ordine 1 che dipende dal tipo di particella coinvolta (e dalla struttura nucleare se del caso) e  $G_F = 10^{-5} \text{ GeV}^{-2}$  e' la costante di Fermi, quindi:









#### Le ampiezze di scattering neutrino elettrone

- Ci sono importanti differenze a seconda della famiglia
- Nel caso dei neutrini muonici (o tauonici) l'ampiezza riceve contributo <u>solo</u> dall'interazione di corrente neutra

$$\Rightarrow \quad \mathcal{A} = \mathcal{A}_{\rm NC}$$

 Nel caso dei neutrini elettronici, esiste lo stesso grafico, con lo stesso valore per l'universalita' delle interazioni deboli, ma anche il grafico di corrente carica, per cui

$$\circ \qquad \widetilde{\mathcal{A}} = \widetilde{\mathcal{A}}_{\rm NC} + \widetilde{\mathcal{A}}_{\rm CC}^{\dagger}$$

- Analogamente per il caso di antineutrini elettornici, avro' sia un contributo di corrente carica che di corrente neutra.
- Questo fa si' che le sezioni d'urto siano <u>diverse</u> nei vari casi



#### Diffusione di neutrini su elettroni: generalita'

• Intendo studiare la collisione elastica

#### $\nu + e \rightarrow \nu + e$

di un fascio di neutrini che urta contro gli elettroni del bersaglio, che posso supporre fermi.

Dopo l'urto, gli elettroni rinculeranno, e potro' rivelarli in vario modo, tenendo conto che sono particelle cariche, dunque che possono ionizzare il bersaglio e/o emettere radiazione Cerenkov, se la loro velocita' e' maggiore di quella della luce nel mezzo.

- La "rivelazione" dei neutrini consiste in realta' nell'osservare il segnale prodotto dagli elettroni nel rivelatore
- Quale che sia il tipo di neutrino o antineutrino, le relazioni cinematiche sono sempre le stesse, esattamente uguali a quelle dell'effetto Compton,

 $\gamma + e \rightarrow \gamma + e$ 

nel limite in cui e' trascurabile la massa del neutrino (≤ eV) rispetto alle energie dei neutrini (≈ MeV) reazioni

• I valori delle sezioni d'urto, conseguenza della dinamica, sono diversi a seconda del tipo di famiglia del fatto che si tratti di particella o antiparticella, perche' diversi sono i grafici da combinare.





#### Diffusione di neutrini su elettroni: cinematica (1)

-Intendo studiare la collisione elastica

 $\mathbf{v} + \mathbf{e} \rightarrow \mathbf{v} + \mathbf{e}$ 

di un fascio di neutrini che urta contro gli elettroni del bersaglio, che posso supporre fermi.

-So che tutte le quantita' cinematiche sono fissate una volta fissato l'angolo di diffusione

-La conservazione dell'energia e impulso da'

(1)  $E_v + m = \varepsilon + E$ 

(2) 
$$E_v = p \cos\theta + \pi_{//}$$

$$0 = p \sin\theta + \pi_t$$

Da (2) e (3) posso ricavare  $\varepsilon$ 

 $\epsilon^2 = \pi_{//2}^2 + \pi_t^2 = (E_v - p \cos \theta)^2 + p^2 \sin^2 \theta$ Da cui

$$\varepsilon^2 = E_v^2 + p^2 - 2 E_v p \cos\theta$$



-Dalla (1) ho:

(5) 
$$\epsilon^2 = (E_v + m - E)^2$$

-Da (4) e (5) posso eliminare le variabili del neutrino nello stato finale

 $(E_v + m - E)^2 = E_v^2 + p^2 - 2 E_v p \cos\theta$ 

-Esprimendo in termini dell'energia cineticaT, ho

T=E-m ; p=  $[T(T+2m)]^{1/2}$ 

e quindi dalla (6) esprimo la relazione fra energia cinetica T e angolo di scattering  $\theta$ : T=2m E<sub>v</sub><sup>2</sup> cos <sup>2</sup> $\theta$  /[(E<sub>v</sub>+m)<sup>2</sup> - E<sub>v</sub><sup>2</sup> cos <sup>2</sup> $\theta$ ] questa e' l'a relazione cinematica che fissa l'energia cinetica dell'elettrone in <sub>31</sub> funzione dell'angolo di deflessione.

#### Diffusione di neutrini su elettroni: cinematica (2)

 La relazione fra energia ed angolo dice che l'energia cinetica dell'elettrone e' massima per θ=0, dove vale:

 $T_{max} = E_v / [(1+m/2 E_v)]$ 



- Notare che l'elettrone non prende mai tutta l'energia del neutrino, per la conservazione del quadri impulso
- All'aumentare dell'angolo, T diminuisce, e raggiunge T=0 per  $\theta = \pi/2$ .
- La variabile di mandelstam t puo' essere espressa in temini delle quantita' cinematiche dell'elettrone

 $t = p^{2-}(m-E)^2 = p^2 - T^2 = 2mT$ 

• Quindi e' lineare con l'energia cinetica dell'elettrone. Il massimo valore corrisponde dunque a

 $t_{max} = 2mE_{v} / [(1+m/2 E_{v})]$ 

#### Diffusione di neutrini su elettroni: la sezione d'urto totale

- •Sappiamo che le ampiezza di diffusione sono  $\mathcal{A}\approx G_F$  e dunque d $\sigma/dt \approx G_F^2$ .
- •Poniamo per semplicita' $d\sigma/dt = \zeta G_F^2$  e studiamo le conseguenze.
- •La sezione d'urto elastica totale e'

 $\sigma = G_F^2 t_{max} = \zeta G_F^2 2mE_v / [(1+m/2 E_v)]$ 

•Se le enrgie dei neutrini sono grandi rispetto ad m, si puo' trascurare il secondo termine nel denominatore, e dunque le sezioni d'urto crescono linearmente con l'energia del neutrino. Numericamente:

$$\sigma = \zeta G_F^2 2mE_v = \zeta 10^{-16} \text{ GeV}^{-2}(E_v / 1\text{MeV}) =$$

=4 10<sup>-44</sup> cm<sup>2</sup> ( $E_v$  / 1MeV)

•I valori delle sezioni d'urto per i vari tipi di neutrini sono riportati in tabella. Si noti che l'urto di  $v_e$  e' quello con la maggior sezione d'urto, circa sei volte rispetto a quella dei  $v_{\mu}$  o  $v_{\tau}$  (che hanno uguali sezioni d'urto).

•Se il fascio incidente contiene  $v_e e v_{\mu}$ , la rivelazione degli elettroni e' circa 6 volte piu' sensibile ai  $v_e$  che agli altri

$$\begin{aligned} \frac{\text{Elastic scattering}}{\sigma_{\nu_e e^- \to \nu_e e^-}} &= \frac{G_F^2 s}{\pi} \left[ \left( \frac{1}{2} + \xi \right)^2 + \frac{1}{3} \xi^2 \right] \\ &\approx 9.5 \cdot 10^{-49} \text{ m}^2 \left( \frac{E_\nu}{1 \text{ MeV}} \right) \end{aligned}$$
$$\begin{aligned} \sigma_{\nu_e e^- \to \nu_e e^-} &= \frac{G_F^2 s}{\pi} \left[ \frac{1}{3} \left( \frac{1}{2} + \xi \right)^2 + \xi^2 \right] \\ &\approx 4.0 \cdot 10^{-49} \text{ m}^2 \left( \frac{E_\nu}{1 \text{ MeV}} \right) \end{aligned}$$
$$\begin{aligned} \sigma_{\nu_\mu e^- \to \nu_\mu e^-} &= \frac{G_F^2 s}{\pi} \left[ \left( \frac{1}{2} - \xi \right)^2 + \frac{1}{3} \xi^2 \right] \\ &\approx 1.6 \cdot 10^{-49} \text{ m}^2 \left( \frac{E_\nu}{1 \text{ MeV}} \right) \end{aligned}$$
$$\begin{aligned} \sigma_{\rho_\mu e^- \to \rho_\mu e^-} &= \frac{G_F^2 s}{\pi} \left[ \frac{1}{3} \left( \frac{1}{2} - \xi \right)^2 + \xi^2 \right] \\ &\approx 1.3 \cdot 10^{-49} \text{ m}^2 \left( \frac{E_\nu}{1 \text{ MeV}} \right) \end{aligned}$$

#### Diffusione di neutrini su elettroni: la distribuzione in energia degli elettroni

- Sappiamo che le ampiezza di diffusion sono  $\mathcal{A} \approx G_F$  e dunque d $\sigma/dt \approx G_F^2$ .
- Poniamo per semplicita':  $d\sigma/dt = G_F^2$ e studiamo le conseguenze.
- Poiche' t =2mT , abbiamo  $d\sigma/dT = 2mG_F^2$
- ossia la distribuzione in energia cinetica degli elettroni diffusi da neutrini con una energia  $E_{\sigma}$  fissata e' piatta, entro l'intervallo cinematico.

•Nei rivelatori a scintillatore liquido (esempio Borexino al GS, KamLAND in Giappone i neutrini sono rivelati misurando l'energia depositata dagli elettroni e raccolta come luce di scintillazione. La figura mostra, ad esempio, il segnale attesto dallo scattering su elettroni dei neutrini monocromatici, come quelli del Berillio.

\* Occorre sempre ricordare che in pratica ci sono fattori diversi a seconda 34 dei tipi di neutrini



T<sub>max</sub>

#### Diffusione di neutrini su elettroni: la distribuzione angolo degli elettroni

•Abbiamo appena visto che, a parte fattori numerici

 $d\sigma/dT$  =2mG<sub>F</sub><sup>2</sup>

•La relazione fra energia e angolo ci permette dunque di ricavare la sezione d'urto differenziale nell'angolo,  $d\sigma/\cos\theta$ , mediante un cambio di variabile. Chiamando x=cos $\theta$  e  $\mu$ =m/E<sub>v</sub>, si trova:

 $d\sigma/dx = x[(1+\mu)^2 + x^2] / [(1+\mu)^2 - x^2] ^2 4m^2 G_F^2$ 

Notare che la funzione e' monotona crescente per x fra 0 e 1.

•Cio' significa che la ditribuzione angolare degli elettroni ha un massimo in avanti (x=1, ossia  $\theta=0$ ) ossia la distribuzione degli elettroni e' piccata in avanti, rispetto alla direzione del neutrino incidente.

•In altri termini, la direzione dell'elettrone e' correlata con quella del neutrino incidente.



 $T=2m E_{v}^{2} \cos^{2} \theta / [(E_{v}+m)^{2} - E_{v}^{2} \cos^{2} \theta ]$ 



•Questo effetto e' utilizzato nei rivelatori di radiazione Cerenkov (come Kamiokande e Superkamiokande) per ricostrire la direzione dell'elettrone diffuso e da questa risalire alla direzione del neutrino incidente.

#### Interazione di antineutrini su protoni

•La reazione classica per la rivelazione di antineutrini di energia di qualche MeV il processo  $\beta$ -inverso su protoni

(1) Anti- $v_e + p \rightarrow n + e^+$ 



Il processo e' descritto dal grafico di corrente carica, disegnato in figura

•La reazione (1) ha una soglia a

 $\Delta = m_p - m_n - m_e = 1.8 \text{ MeV}$ 

•Notare che anti- $v_{\mu}$  e anti- $v_{\tau}$  non possono produrre questa reazione. Nella stato finale ci dovrebbe essere un  $\mu$  o un  $\tau$ , vedi figura, ma questo richiede centinaia di MeV; dunque questi antineutrini sono <u>sterili</u> nel range delle energie di nostro interesse, fino a qualche decina di MeV.

•Notare che la soglia permette di rivelare gli antineutrini prodotti nel decadimento dell'U e del Th





#### La sezione d'urto di antineutrino su protone

•Il protone che rincula porta con se' poca energia, dunque (quasi) tutta l'energia disponibile viene assorbita dal positrone, il quale acquista un energia cinetica  $T = (E_v - \Delta)$  e un impulso

 $p = [T(T+m)]^{1/2} = [(E_v - \Delta)((E_v - \Delta + m))]^{1/2}$ 

- La distribuzione del positrone e' (praticamente) isotropa.
- A parte un fattore,  $d\sigma/dt = G_F^2$  e dunque avro'

 $\Box \sigma = G_F^2 (t_{max} - t_{min})$ 

•La differenza la posso calcolare confrontando t fra  $\theta=0$  e  $\theta=\pi$ e dunque si trova

$$\Box \sigma = 4 \ \mathrm{G_F}^2 \ \mathrm{E_v} \ \mathrm{p} = 4 \ \mathrm{E_v} \ [(\mathrm{E_v} - \Delta)((\mathrm{E_v} - \Delta + m))]^{1/2}$$

La sezione d/urto, mostrata in figura, va a zero all'energia di soglia,  $\Delta = m_p - m_n - m_e = 1.8 \text{ MeV}$ 

•Notare che questa sezione d'urto, per energie dell'ordine di qualche MeV, e' di ordine  $\sigma \approx G_F^2 E_v^2$ e dunque piu' grande delle sezioni d'urto di neutrini su elettroni,  $\sigma \approx G_F^2 mE_v$ 







#### La rivelazione delle collisioni di antineutrini in Idrogeno

•Il principio dell'esperimento e' ancora oggi quello usato da Reines e Cowan, descritto nel corso precedente e in appendice.

•In uno scintllatore liquido si misura l'energia rilasciata dal positrone nel corso del suo rallentamento e quindi nell'annichilazione. Questo costituice il segnale "prompt"

•Il neutrone termalizza e quindi viene catturato da un nucleo ( es.  $n+p \rightarrow d+\gamma$ ) e si rivela il gamma, che costituisce la componente ritardata del segnale, vedi la figura della distribuzione degli eventi in KamLAND

•E' essenziale avere questo doppio segnale, per eliminare i fondi, che sono sempre importanti in esperimenti con neutrini, caratterizzati da un numero di eventi basso

1) anti-
$$\nu_{e} + p \rightarrow n + e^{+}$$
  
2)  $e^{+} + e^{-} > 2 \gamma$   
3)  $n + {}^{A}Z \rightarrow {}^{A+1}Z + \gamma$ 



Il deuterio, un nucleo versatile per la rivelazione di neutrini e antineutrini di interesse astrofisico

• Il deuterio (d=(p,n) e' un nucleo particolarmente versatile, in quanto puo' dar luogo a diversi tipi di interazione, sia per neutrini che antineutrini :

CC:  $v_e + d \rightarrow e + n + n$ 

NC:  $v_x + d \rightarrow v_x + p + n$ 

- <u>Da notare che, ad energie di qualche MeV, la prima puo'</u> essere indotta solo da neutrini elettronici, mentre per la seconda e' attivo qualsiasi tipo di nautrino, con uguale sezione <u>d'urto</u>.
- Misurare il rapporto fra gli eventi di corrente carica e quelli di corrente neutra significa dunque misurare il rapporto fra il flusso di  $v_e$  e il flusso di neutrini di ogni tipo.

flusso di  $v_e$  e il flusso di neutrini di ogni tipo. •Da notare che posso avere interazioni di corrente carica anche per antineutrini elettronici,

CC: anti- $v_e$ + d $\rightarrow$  e<sup>+</sup> + p +p

•La versatilita' del deuterio e' stata sfruttuata dall' esperimento SNO, che ha dato importantissimi risultati sulla fisica de neutrino.





#### Reazioni di CC su nuclei pesanti: la rivelazione dei neutrini di bassa energia (pp)

 Nessuno dei processi precedenti e' adatto per rivelare neutrini di energia bassa come quelli dei pp (E<0.4 MeV):</li>
 -nel caso dello scattering v+e non ci sono soglie cinematiche, ma il fondo diventa dominante a energie cosi' basse
 le interazioni di CC che abbiamo considerato finora hanno so



-le interazioni di CC che abbiamo considerato finora hanno soglie piu' alte.

• Si ricorre a interazioni su nuclei pesanti, in cui possa avvenire, l'interazione di CC  $v_e + (Z,A) \rightarrow e + (Z-1,A)$ 

Il nucleo figlio e' evidentemente instabile, e decade per cattura elettronica:

 $e + (Z-1,A) \rightarrow v_e + (Z,A)$ 

•Occorre trovare un nucleo conveniente, cioe' 1) per cui i neutrini del pp siano sopra soglia 2) i cui figli possano essere separati dal bersaglio e 3) abbiano vita media sufficientemente lunga per cui dopo la separazione si possa rivelare il decadimento (ad esempio in un contatore proporzionale).

- •Il nucleo ideale e' il <sup>71</sup>Ga, usato da Gallex e SAGE
- •Da notare che, la CC puo' essere indotta solo da neutrini elettronici.

<sup>71</sup>Ga(
$$v_e, e$$
)<sup>71</sup>Ge (E<sub>thr</sub> = 233 keV)  
EC  $\tau = 16.5 \text{ d}$   
 $7^1Ga$ 

#### I laboratori sotterranei

- La moderna sperimentazione sui neutrini viene svolta in laboratori sotteranei,
- Poiche' le sezioni d'urto dei neutrini sono piccole, occorre schermarsi da ogni radiazione che possa costituire un fondo.
- I laboratori sono a centinaia o migliaia di metri sotto il suolo, in modo da ridurre la radiazione cosmica per ordini di grandezza
- Il piu grande laboratorio sotterraneo e' al Gran Sasso, sotto 1000 m di roccia (3000 MWE, ossia meter water equivalent) dove il flusso e' ridotto di 10<sup>6</sup> rispetto alla superficie
- Esistono altri grandi laboratory in Canada (Sudbury, Neutrino Observatory, SNO), in giappone (Kamioka) e, piu' piccoli, in altri paesi







#### I principali esperimenti sotterranei

- Davis (Homestake, USA) (1964-1995), metodo radiochimico Cl-Ar, prima rivelazione dei neutrini solari del Boro,
- Kamiokande e Superkamiokande (1985 in corso), rivelatori Cerenkov ad acqua, prima rivelazione direzionale e in tempo reale dei neutrini solari del Boro, rivelazione dei neutrini da SN 187A
- Gallex (LNGS) e Sage(Russia) (1992-2005) metodo radiochimico Ga-Ge Misura di neutrini di bassa energia (pp)
- Borexino (LNGS), in corso, 300 ton di scintillatore liquido ultrapuro, Misura dei neutrini solari del Berillio, geoneutrini
- Luna( LNGS), in corso: misura di sezioni d'urto di interesse astrofisico
- SNO: (2001 -2008) rivelatore ad acqua pesante, primo esperimento di apparizione sulle oscillazioni di neutrino, con neutrini solari
- KamLAND: (2002 -in corso) 1000 ton di scintillatore liquido, conferma delle oscillazioni di neutrini mediante reattori, prima rivelazione dei geoneutrini
- I risultati di questi esperimenti saranno l'oggetto delle prossime lezioni



## Decalogo

1)Esistono tre famiglie di neutrini, con le loro anti particelle.

2)I neutrini sono stabili, con masse non superiori all'eV

- 3)Le principali sorgenti arificiali di neutrini sono i reattori (anti- $v_e$  con energie di qualche MeV) e gli acceleratori (principlamente  $v_{\mu}$ , con energie dell'ordine dei GeV)
- 4) Neutrini e antineutrini hanno interazioni di corrente carica e neutra
- 5) Le sezioni d'urto sono  $d\sigma/dt \approx G_F^{-2}$
- 6) A energie di interesse astrofisico ( E qualche MeV) i neutrini muonici e tauonici sono sterili per processi di corrente carica
- 7) La diffusione di neutrini su elettroni e' fortemente direzionale; le sezioni d'urto sono piu' grandi per i  $v_e$ )
- 8) Il processo beta inverso e' la classica rezione per rivelare anti- $v_e$  di pochi MeV,; produce positroni con energia cinetica T=E- $\Delta$ , con distribuzione approssimativamente isotropa e neutroni di cui si osserva la cattura ritardata
- 9) Su nuclei di deuterio possono avvenire processi di CC, indotti da  $v_e$ , ma anche di corrente neutra, in cui tutti i tipi di neutrini sono attivi
- 10) Pe rrivelare i neutrini della reazione pp, occorrono reazion idi corrente carica su nuclei con soglia molto bassa, come il <sup>71</sup>Ge









# Appendice

- Scintillatori
- Radiazione Cerenkov
- L'esperimento di Reines e Cowan
- L'esperimento dei due neutrini

#### Scintillator and scintillator counters (Wiki)

A scintillator is a material which exhibits the property of luminescence[1] when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate, i.e. reemit the absorbed energy in the form of a small flash of light, typically in the visible range. (Throughout this article, the word "particle" will be used to mean "ionizing radiation" and can refer to either charged particulate radiation such as electrons and heavy charged particles, or to uncharged radiation such as photons and neutrons, provided that they have enough energy to induce ionization.) If the reemission occurs promptly, i.e. within the  $\sim 10$  - 8s required for an atomic transition, the process is called (or more precisely related to) fluorescence.

A scintillation detector or scintillation counter is obtained when a scintillator is coupled to an electronic light sensor such as a photomultiplier tube (PMT) or a photodiode. PMTs absorb the light emitted by the scintillator and reemit it in the form of electrons via the photoelectric effect. The subsequent multiplication of those electrons (sometimes called photo-electrons) results in an electrical pulse which can then be analyzed and yield meaningful information about the particle that originally struck the scintillator. Vacuum photodiodes are similar but do not amplify the signal while silicon photo-diodes accomplish the same thing directly in the silicon.

The first use of a scintillator dates back to an experiment in 1903 where Sir William Crooks observed a ZnS screen struck by  $\alpha$ -particles..

Today, scintillation detectors are used in a wide array of applications, including fundamental research in particle and nuclear physics, oil exploration, field spectrometry, container and baggage scanning, health physics, space physics, industrial gauging, and medical diagnostics and therapy (PET, SPECT, therapy imaging, etc...).







# Cerenkov radiation\*

- Čerenkov radiation (also spelled Cerenkov or Cherenkov) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a medium at a speed greater than the speed of light in that medium. The characteristic "blue glow" of nuclear reactors is due to Čerenkov radiation. It is named after Russian scientist Pavel Alekseyevich Čerenkov, the 1958 Nobel Prize winner who was the first to characterise it rigorously...
- A common analogy is the sonic boom of a supersonic aircraft or bullet. The sound waves generated by the supersonic body do not move fast enough to get out of the way of the body itself. Hence, the waves "stack up" and form a shock front. In a similar way, a charged particle can generate a photoni shock wave as it travels through an insulator.
- In the figure, the particle (red arrow) travels in a medium with speed v and we define the ratio between the speed of the particle and the speed of light as  $\beta = v / c$  where c is speed of light. n is the refractive index of the medium and so the emitted light waves (blue arrows) travel at speed  $v_{em} = c / n$ .
- Radiation is emitted along a cone with aperture given by
- $\cos \theta = 1/n\beta$
- \* vedi Cerenkov radiation Wiki



#### Il processo beta-inverso e la rivelazione degli antineutrini La rivelazione di antineutrini, cioè dei prodotti di loro interazioni, fu effettuata per la

La rivelazione di antineutrini, cioè dei prodotti di loro interazioni, fu effettuata per la prima volta nel 1956, osservando un processo che è sostanzialmente l'inverso del decadimento  $\beta$  del neutrone e che ancora oggi rappresenta il modo classico di studio di queste particelle :

(1) anti- $v_e + p \rightarrow n + e^+$ 

- Il positrone, la particella leggera dello stato finale, porta con sé (quasi) tutta l'energia disponibile nel processo, la sua energia cinetica essendo  $T_e=E_v + m_p m_n m_e=E_v 1.8 MeV$ Il processo è dunque possibile per antineutrini con  $E_v > 1.8 MeV$ .
- Nel bersaglio, il positrone rallenta e annichila su un elettrone,

(2) 
$$e^+ + e^- \longrightarrow 2 \gamma$$

e si ha quindi un primo segnale, due fotoni in direzioni opposte e ciascuno con E=m<sub>e</sub>

Il neutrone viene rallentato dagli urti fino ad energie termiche ( in tempi  $\Delta t$  dell'ordine di decine di  $\mu$ s in un liquido); se nel bersaglio è presente un assorbitore di neutroni <sup>A</sup>Z, può essere identificato dal  $\gamma$  emesso mediante la cattura:

(3) 
$$n+{}^{A}Z \rightarrow {}^{A+1}Z + \gamma.$$

La presenza del  $\gamma$  di cattura ritardato rispetto al segnale dell'annichilazione è caratteristica e distintiva dell'interazione dell'antineutrino: si hanno molti conteggi di fondo (dovuti a cosmici e/o radioattività naturale) corrispondenti a (2) o (3), ma molti di meno se si richiede sia (2) che (3).

#### L'esperimento di Reines e Cowan (1)

- Come sorgente di anti- $v_e$  usavano i nuclei instabili prodotti mediante reazioni di fissione in un reattore nucleare (in cui si producono in media - 6 anti- $v_e$  per ciascuna fissione). Lo spettro energetico è continuo, con un massimo intorno a 6 MeV. Fuori dal nocciolo di un reattore di potenza si hanno flussi  $\Phi \approx 10^{13}$ cm<sup>-2</sup> s<sup>-1.</sup>
- Come bersaglio usavano 200 litri di acqua contenente un numero  $N_p \approx 10^{28}$  di protoni "liberi" cioè in atomi di <sup>P</sup> H, bersaglio per la reazione (1)
- Nell'acqua era dissolto un sale di Cadmio, un nucleo con grossa sezione d'urto per cattura di neutroni, in modo da poter rivelarli mediante (3)
- Il bersaglio era circondato da scintillatore liquido cui erano accoppiati dei fotomoltiplicatori, per rivelare i 2 γ di annichilazione (2) e il γ di cattura (3)

1) anti- $v_e + p \rightarrow n + e^+$ 2)  $e^+ + e^- > 2 \gamma$ 3)  $n + {}^{A}Z \rightarrow {}^{A+1}Z + \gamma$ 



• Il rivelatore era situato a una dozzina di metri dal nocciolo del reattore e una dozzina di metri sotto terra, per avere uno schermo dai raggi cosmici

Reines e Cowan, selezionavano gli eventi in cui compariva sia (2) che (3). Dai dati possiamo ricavare la sezione d'urto  $\sigma$  di (1), poiché v=  $\epsilon \Phi \sigma N_{p.:}$  $\sigma = v/ \epsilon \Phi N_p \approx 10^{-43} cm_{48}^2$ 

#### L'esperimento dei due neutrini

- Il mesone  $\pi^+$  decade principalmente in  $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ , dove abbiamo indicato con  $\nu_{\mu}$  il neutrino prodotto assieme al  $\mu^+$
- Questo non è lo stesso stato che accompagna l'e<sup>+</sup>, cioè il  $v_e$ . Se così fosse ( $v_{\mu} = v_e$ = v) in un successivo urto con nuclei dovrebbe indurre reazioni v+Z  $\rightarrow$  Z+1 + e.
- Ledermann, Schwartz e Steinberger osservarono che i neutrini associati al  $\mu^+$ producevano la reazione  $\nu+Z \rightarrow (Z+1) + \mu$  ma non  $\nu+Z \rightarrow Z+1 + e$ .



#### I numeri leptonici di famiglia

- Nel 1975 è stato scoperto il leptone carico  $\tau$  e nel 2000 sono state osservate reazioni su nuclei indotte dai neutrini  $v_{\tau}$  che lo accompagnano, in cui l'assorbimento di  $v_{\tau}$  su nuclei produce di nuovo  $\tau$ .
- Il quadro che emerge è la conservazione del numero leptonico di famiglia, definito, per ciascuna famiglia α=ε,μ,τ come L<sub>α</sub>=1 per l<sup>+</sup><sub>α</sub> e ν<sub>α</sub>, 0 per le altre famiglie, opposto per le antiparticelle. Evidentemente

 $L = L_e + L_{\mu} + L_{\tau}.$ 

• La conservazione dei numeri di famiglia implica la conservazione del numero leptonico, ma non è vero il viceversa: il numero leptonico può essere conservato ma i numeri di famiglia possono essere violati.

